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An idealized theory predicts coherent synchrotron radiation (CSR) in whispering gallery
modes, in quantitative agreement with observations at NSLS-VUV in 2001. A quanti-
tative comparison to theory was difficult for later experiments at the CLS (Canadian
Light Source) owing to the complicated form of the vacuum chamber at the point of

observation. Efforts to improve the theory led to a general scheme for studying fields
in a rectangular chamber of varying width. It works in the frequency domain, with a
spatial Fourier development only in the vertical coordinate. The calculation reduces to
integration of a simple system of ordinary differential equations, with arc length s as

the independent variable. A new scheme to handle a transversely singular or highly
concentrated charge/current is an essential feature. If the equations are integrated by an
implicit rule (trapezoidal method) the calculation can be speeded up by a large factor
in comparison to explicit integration, and the paraxial approximation can be avoided,

thus accommodating backward-propagating waves. The time for the field calculation is
so short that it will be negligible compared to that for charge/current construction and
particle pushing in a self-consistent macroparticle simulation, which could be in three

dimensions.

1. Whispering Gallery Modes

Consider a beam circulating in a smooth, circular torus with rectangular cross

section, with the beam centered in the cross section. The fields excited by the

beam can be expressed in terms of high-order Bessel functions, since the geometry

permits a separation of variables1,2. This entails a Fourier development in the

vertical coordinate y, chosen so as to enforce the metallic wall boundary conditions

on the upper and lower surfaces. Satisfaction of the boundary conditions on the

vertical walls is a linear problem which has a solution except at certain frequencies,

the frequencies of whispering gallery resonances. The pattern of resonances in the

real part of the impedance is shown in Fig.1, for the parameters of the now defunct

NSLS-VUV light source.

The spectrum from a Michelson interferometer at NSLS-VUV, reported in

20013,4, is shown in Fig.2. Measurements at lower frequencies, down to the shield-

ing cutoff of CSR, were carried out by microwave techniques5. The comparison of

measured frequencies with theory is shown in the Table 1; see Ref. 6 for details.

The vacuum chamber of the VUV ring approximated the case of the theoretical
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Fig. 1. ReZ(k) for parameters of VUV light source, vs. wave number k = 1/λ in units of cm−1.

Exp. Thy. Exp. Thy.

0.80 0.827 6.10 6.31

0.93 — 7.25 7.32

1.32 1.21 9.00 8.32

1.57 1.60 10.0 9.29

2.10* 2.04 11.1 10.28

2.40 2.48 12.0 11.29

2.76* 2.94 12.8 12.33

3.10* 3.26 13.8 13.31

3.66* 3.62 15.0 14.3

3.88* 3.90 15.7-15.9 15.3

4.20 4.38 16.7 16.3

5.25 5.34 18.0 17.3

18.8* 18.3

model to a good extent, except for the straight sections and the usual presence of

small structures such as bellows. Assuming that the transitions to and from straight

sections had a minor affect on gross radiation patterns, one can be encouraged by
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Fig. 2. Far IR spectrum measured at NSLS

the generally good agreement with theory in Table 1.

We should then go on to examine more recent observations. Precise mea-

surements of CSR spectra in the far IR were carried out at the CLS7 using

a large interferometer, a Bruker IFS 125HR , capable of resolution down to

∆k = ∆(1/λ) = 0.0008 cm−1 . Spectra are typically in the range 6 − 15 cm−1 or

0.18-0.45 THz, and have a form such as that displayed in Fig.3. The corresponding

interferogram is shown in Fig.4. The position of the peaks was remarkably invariant

with respect to changes in the machine setup (energy, bunch length, bucket filling

pattern, CSR in bursting or continuous mode). Moreover, the pattern was the same

over a span of years, during which equipment in the optical beam line was changed

radically. This stability strongly suggests that the position of peaks is determined

by the bend radius and the geometrical form of the vacuum chamber, as it would

be in the simple toroidal model.

The average spacing of peaks is 0.074 cm−1. To get such a small value from

the toroidal model, the outer wall of the chamber would have to be 33 cm from

the beam, much bigger than the average distance to the wall in the bends of the

actual ring. This average distance to the wall is only vaguely defined, however,

since in most of the bends there is a pumping slot in the wall, 1 cm high, which can

allow some communication in short wavelengths with a large antechamber. There

are two special bends in which the slotted wall is absent, and the beam has open
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Fig. 3. Fourier transform of the interferogram. Peak spacing ∆k = ∆λ−1 = 0.074 cm−1.

Fig. 4. Interferogram as a function of path length difference

communication with the full flared chamber as illustrated in Fig.5. The signal to the

interferometer is picked up by the M1 mirror in such a bend, placed near the beam

at the end of the 15◦ arc. The maximum excursion of the wall in the flared chamber

is 33 cm from the beam, exactly the distance required in an unjustified application

of the toroidal model. There is some reason to believe that this coincidence is not

accidental, as I have found in a perturbative analytical model.
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Fig. 5. Fluted vacuum chamber at the FIR dipole with bending radius R = 7.143 m and deflection
angle θ = 15◦. The maximum excursion of the outer wall from the beam (——) is 33 cm.

It appears that detailed numerical modeling of fields in the flared chamber will

be needed to understand the spectrum quantitatively. As a first step we have made

some progress in analyzing the fields at lower frequencies, which are involved in a

different kind of experiment at the CLS. Following a suggestion of Steven Kramer,

a diode detector was installed behind an existing window (part of the original laser

alignment system), so as to look upstream as shown in Fig.5. The detector catches

backward propagating waves in the frequency range 30-110 GHz, being sensitive to

horizontal or vertical polarization depending on its orientation.

Just by looking at oscilloscope traces of the detector signal, Jack Bergstrom

contrived a picture of CSR waves developed in the bend and then reflected backward

from the photon absorber, a copper bar filling a good part of the chamber cross

section, and the metallic structure supporting the M1 mirror. He thought he could

see not only the prompt pulse but also a pulse 12 cm behind, thus a long range

wake field as predicted by the toroidal model. This was quite exciting, since a direct

observation of these long range wakes had never been made before.

We therefore set about to simulate the experiment numerically, simplifying the

geometry of the chamber by the model shown in Fig. 5.1 from D. Bizzozero’s the-

sis8. Bizzozero integrated the six Maxwell curl equations in curvilinear coordinates,

with time as the independent variable, after invoking a Fourier development in the

vertical coordinate in such a way as to set the boundary conditions on the upper

and lower surfaces. To discretize in the horizontal coordinate while meeting the

boundary conditions on the vertical walls he applied the Discontinuous Galerkin

(DG) Method, a sophisticated finite element method which shows good conver-

gence in the presence of complicated boundaries. The source was a line charge with

a Gaussian longitudinal charge density, σ = 2 mm. Simulation of the diode signal

is based on the calculated values of Ex and Ey at the point where the tube leading

to the diode meets the main chamber; the tube itself is not accounted for.

The upper graph in Fig.6 shows the simulated diode signal for horizontal polar-

ization. The various peaks are correlated with experimental peaks in the red curve

of the lower graph. The first two peaks, A and B, arise from reflections off the

nearest structure, the photon absorber. The remaining peaks C-G come from the
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more distant mirror support structure, which is just a flat surface close to the beam

in the model.

Of particular interest is peak B, which is 12 cm in spatial units behind the

prompt pulse A. We view B as a wake field pulse, both expected in theory and

seen indirectly in the interferogram of the other experiment. The pulse in the

interferogram of Fig.4 is at 13.5 cm, essentially at the reciprocal of the peak spacing

of 0.074 cm in its Fourier transform. The discrepancy between 12 cm and 13.5 cm is

not necessarily detrimental to our interpretation, since the wake field is by definition

dependent on the point of observation. Again, the peaks D, E, F, G are interpreted

as successive wake pulses, with some correspondence to the interferogram. For a

more detailed discussion see Ref. 7.

The DG simulation displayed complex and highly resolved local structures. Fig.7

shows the simulation of a leading pulse reflected from the photon absorber (left)

and the later pulse from the M1 mirror assembly (right). The figure also shows the

beginning of a long exit channel extending the computational domain to the right.

It is so long that any wave reflected from its end does not come back to the main

chamber during the time of computation. These computations were done on a GPU

with the Matlab Parallel Toolbox.

The frequency spectrum of fields in this calculation cuts off at about 2.5 cm−1,

owing to the relatively long driving bunch of 2 mm. Thus we get no access to the

domain of the spectrometer data of Fig.3. To go to high frequencies we could of

course try to accommodate a shorter driving bunch through greater computer power,
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Fig. 6. Upper graph shows the simulated diode signal, with peaks correlated to experimental
peaks A-G (red curve in lower graph)

but it seems more promising to abandon the time domain in favor of the frequency

domain method developed in Ref. 9, but with important new improvements . In

Ref. 9 we have already been able to treat CSR from a driving bunch of 0.01 mm

with very modest computer demands, at least for a chamber with smooth walls.
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Fig. 7. Simulation of waves reflected from the photon absorber (left) and the M1 mirror support
structure (right). Contour plots of Ex in the lowest vertical mode, at t = 2.1 m/c. The abscissa
is s, the ordinate x, both in meters. The beam is at x = 0, the inner wall at x = −0.032 m.

2. A finite difference scheme in the frequency domain

The proposed method works in standard accelerator (Frenet-Serret) coordinates

(s, x, y), with the reference trajectory in the plane y = 0 consisting of bends and

straights in an arbitrary sequence. The vacuum chamber has top and bottom plates

at y = ±g, and inner and outer sidewalls at varying distances x = x−(s) and

x = x+(s). It will be perfectly conducting, to start.

All field and charge/current components will represented as

F (s, x, y, t) =
∞∑
p=0

∫ ∞

−∞
dkeik(s−βct)φp(y)F̂p(s, x, k) . (1)

The vertical Fourier mode φp is chosen to meet boundary conditions at y = ±g; for

instance for F = Hy we have φp = sin(πp(y + g)/2g).

It is useful to think of (1) as the Fourier transform with respect to beam frame

coordinate z = s−βct at fixed s. In another view it is merely the Fourier transform

with respect to t at circular frequency ω = kβc with Fourier amplitude Ĝp(s, x, k) =

exp(iks)F̂p(s, x, k), hence an entirely general representation in which one chooses to

separate the rapidly varying factor exp(iks) in the definition of the amplitude. The

representation is general, but contains primarily right-moving waves if and only if

F̂p(s, x, k) is slowly varying in s.

All field components are expressed in terms of Êyp and Ĥyp and their derivatives
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with respect to x and s; see Ref. 9, Eqs.(17)-(21). Moreover, Êyp and Ĥyp are the

solutions of independent wave equations, not coupled even by boundary conditions

(for perfect conductors). Within a bend of radius R, the field uE = Êyp or u
H = Ĥyp

satisfies

∂2u

∂s2
+ 2ik

∂u

∂s
=

−
(x+R

R

)2[∂2u

∂x2
+

1

x+R

∂u

∂x
+

(
γ2
p −

( kR

x+R

)2)
u− Ŝp(s, x, k)

]
,

γ2
p = k2 − α2

p , αp = πp/2g . (2)

where Ŝp is the appropriate source term for uE or uH , respectively.

One often invokes the Slowly Varying Amplitude Approximation (SVA), also

known as the Paraxial Approximation. It amounts to throwing away the second

derivative uss, under the assumption that

∥∂
2u

∂s2
∥ ≪ 2k∥∂u

∂s
∥ , (3)

where ∥ ∥ is some appropriate norm. This does not make sense for k → 0, but it only

need be enforced for k above the “shielding threshold”, the only region of interest

for CSR. In the example studied in Ref. 9, which involved a vacuum chamber of

constant width and a short bunch, we showed that (3) is valid. In earlier work by

various authors the validity of SVA was simply assumed. Moreover, in unpublished

work we showed that SVA was not bad in a chamber of mildly varying width, which

yielded some limited insights on the effect of varying width. Even if there is a large

variation in width, SVA can be valid as s varies until a strong backward wave is

excited by some structure in the wall.

After dropping uss we can try a finite difference approximation to discretize (3).

Let us first assume that the chamber has constant width, with inner and outer walls

at x = x− and x = x+, respectively. We define a mesh in x with N points,

xj = x− + (j − 1)∆x , ∆x = (x+ − x−)/(N − 1) , j = 1, · · · , N . (4)

A simple scheme is derived by approximating the solution locally by a quadratic

polynomial in x, at each s = sn = n∆s. We write un
j ≈ u(sn, xj) for the approxi-

mate value at a mesh point, so that the quadratic formula is

u(xj + p∆x) =
1

2
p(p− 1)uj−1 + (1− p2)uj +

1

2
p(p+ 1)uj+1 . (5)

Putting this into (2) and evaluating at mesh points we have

un+1
j − un−1

j

2∆s
=

i

2k

(xj +R

R

)2[un
j+1 − 2un

j + un
j−1

∆x2
+

1

xj +R

un
j+1 − un

j−1

2∆x
+

(
γ2
p −

( kR

xj +R

)2)
un
j − Ŝp(xj , sn, k)

]
,

j = 2, · · · , N − 1 . (6)



January 22, 2018 8:54 ws-procs961x669 WSPC Proceedings - 9.61in x 6.69in csr˙realistic˙proc page 10

10

Here we have replaced ∂u/∂s by the central difference quotient; we shall comment

on this choice presently.

For a first try the simplest choice for the charge and current densities is

ρ(s, x, y, t) = qλ(s− βct)H(y)δ(x) , (Js, Jx, Jy) = (βcρ, 0, 0) ,∫
λ(s)ds =

∫
H(y)dy = 1 , (7)

namely, a line charge with arbitrary longitudinal and vertical densities, with total

charge q. The corresponding sources for (2) are

ŜE
p = qZ0αpcλ̂(k)Hpδ(x) , ŜH

p = qβcλ̂(k)Hp

(
δ(x)/R+ δ′(x)

)
, (8)

where Z0 is the impedance of free space and λ̂ and Hp are Fourier transforms of λ

and H as defined in Ref. 9, Eq.(33). Owing to the presence of δ(x) and δ′(x) these

sources cannot be represented numerically by their values on the x-grid, and (6)

cannot be applied directly. To avoid this problem we change the dependent variable

u to a new dependent variable, which satisfies a wave equation that is the same as

(2) but has a smoother source denoted by S̃p, amenable to representation by its

values on the grid.

Fig. 8. The smooth effective source for the new dependent variable.

To see how this goes for u = uE we write ŜE
p = c1δ(x) with c1 being the

coefficient given in (8). Then the expression in square brackets in (2) has the form

Φ = uxx+ a(x)ux + b(x)u− c1δ(x) . (9)

We define a new dependent variable u1(x) = u(x) − ξ1(x) where ξ1(x) = c1xθ(x),

with θ(x) being the unit step function (equal to 1 for x ≥ 0, else equal to zero).

Then Φ takes the form

Φ = u1xx + a(x)u1x + b(x)u1 − σ1(x)θ(x) , σ1(x) = −c1(a(x) + xb(x)) . (10)
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Hence u1 satisfies the same wave equation as u, but with the piecewise continuous

source σ1(x)θ(x) replacing the delta function. Further transformations can make

the effective source arbitrarily smooth9. The second transformation is u2(x) =

u1(x) − ξ2(x), ξ2(x) = σ1(0)x
2θ(x)/2. Then the source behaves as xθ(x) near

x = 0 and has the graph shown in Fig.8. After trials with one, two, and three

transformations, two emerges as a good choice. Putting v = u2, we write the net

result for the unknown function after two transformations as

v(x) = u(x)− ξ(x) . (11)

The expressions for ξ and the corresponding smoothed sources S̃p are given in Ref. 9,

Eqs. (54), (55). The boundary conditions are that uE(x±) = 0 and ∂xu
H(x±) = 0,

hence the boundary conditions on v are

vE(x+) = −ξE(x+) , vE(x−) = 0 , (12)

∂xv
H(x+) = −∂xξ(x+) , ∂xv

H(x−) = 0 . (13)

To enforce the two conditions of (13) we make use of the quadratic interpolation

(5), centered at x2 for the inner wall and at xN−1 for the outer wall. Recalling (12),

and taking the derivative of the interpolants to enforce (13), we have the boundary

values as

vE1 = 0 , vEN = −ξE(x+) , (14)

vH1 =
4

3
vH2 − 1

3
vH3 , vHN = −2

3
∆x∂xξ

H(x+)−
1

3
vHN−2 +

4

3
vHN−1 . (15)

Returning now to (6), written for v rather than u with the appropriate smoothed

Fig. 9. Re Êy1(x) (blue) and Im Êy1(x) (red), kR = 5 · 105.

source S̃p, we substitute (14) and (15) for the boundary values on the right hand

side. We then have N−2 equations to determine the N−2 interior values, assuming
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Fig. 10. Re Ĥy1(x) (blue) and Im Ĥy1(x) (red), kR = 5 · 105.

a given initial condition v0. To start the recursion on n we actually need v1 as well

as v0, which we obtain by using Euler’s method for the first step.

A code to realize the scheme is obviously short and simple. To illustrate we give

an example already treated in Ref. 9 by a slightly more elaborate version of the

present method, which used a 5-point interpolation rather than the 3-point. The

parameters are for the final bend in the bunch compressor BC2 of LCSL-II: bend

radius R = 12.9 m, bend angle θ = 0.0425 rad, chamber width 5 cm, chamber height

2 cm. The charge is 100 pC, and the bunch is Gaussian in z and y with σz = 10 µm

and σy = 160 µm. The initial condition is the steady state solution for the beam in

an infinite straight pipe9. Fig.9 shows Êy1(x) and Fig.10 shows Ĥy1(x) (i.e., p = 1

vertical modes) at the end of the bend for kR = 5 · 105, which means a frequency

around the middle of the relevant range. Agreement of a new and simpler 3-point

code with the older 5-point code of Ref. 9 is excellent, for the same ∆x.

3. Chamber of varying width

To state the scheme most simply, suppose that only the outer wall position x+(s)

varies with s; there is no special difficulty in allowing x− to vary as well. Within a

bend of radius R the boundary conditions at x+(s) are

vE(x+(s)) = −ξE(x+(s)) , (16)[
ts(s)∂xu

H − tx(s)

1 + x/R
(ikuH + ∂sv

H)

]
x=x+(s)

= 0 , (17)

where t = (ts, tx) is the unit tangent vector to the wall.

We define a fixed uniform mesh {xi}Ni=1 with xN > maxx+(s), so that the mesh

extends beyond the maximum excursion of the wall. Let xi(n) be the mesh point

closest to x+(sn), which may be inside or outside the wall. Then at s = sn the
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right hand side of the differential system will be discretized as in (6) with just i(n)

points. Moreover, vi(n) will be given the value implied by the boundary condition

and our basic interpolation (5). For instance, vEi(n) is determined by (16) through

the linear equation

vE(x+(sn)) =
1

2
p(p− 1)vEi(n)−2 + (1− p2)vEi(n)−1 +

1

2
p(p+ 1)vEi(n) =

−ξE(x+(sn)) , p =
(
x+(sn)− xi(n)−1

)
/∆x (18)

In a similar way, vHi(n) is determined by (17) if we put ∂sv
H = ((vH)n−(vH)n−1)/∆s.

As n increases, i(n) will occasionally increase or decrease by one unit. (We

restrict ∆s to be so small that it never changes by two units.) The code will be

made to detect this one step before it happens, say at n = n∗−1. If i(n∗) = i(n)−1

we proceed to step n∗, in which the right hand side is now evaluated from vn at

only i(n) − 1 mesh points. If instead i(n∗) = i(n) + 1 we have to extrapolate the

right hand side quadratically to define it at an additional mesh point xi(n)+1, in

preparation for step n∗.

This scheme was implemented for a mild wall perturbation, for example one

period of a cosine curve with a small amplitude. We found that a field evaluated

near the wall at its largest excursion had oscillations in its frequency spectrum with

a shorter wavelength than those in the same field evaluated at x = 0. If this short

wavelength pattern could somehow be reflected back to points near x = 0 by a

more severe wall perturbation, we would have a qualitative explanation of the CLS

spectrum, in which the wavelength at the M1 mirror seemed to be determined by

the maximum excursion of the outer wall.

4. Larger steps in s through an implicit integration rule

A shortcoming of the method described is a limitation on the step size ∆s, described

by the Courant-Friedrichs-Lewy (CFL) stability condition. The CFL condition is

that r = ∆s/(2k(∆x)2) be sufficiently small; otherwise the iterates may grow with-

out bound with increasing n. This is most restrictive at the minimum k, corre-

sponding to the shielding threshold, such that kR = 3.3 · 104 in the example above.

With 400 cells in the x-mesh we found that instability set in at around r = 0.23,

which implied about 30000 steps in s for stability at kmin. In spite of this large

number we were happy with the result since the method is still much faster than

earlier CSR algorithms, even accounting for the cost of repeating the calculation

for many values of k and p.

A well known way to overcome the CFL restriction is to apply an appropriate

implicit integrator, in which vn+1 is not given explicitly in terms of vn, but rather

in terms of the solution of a certain nontrivial equation. If the solution of that

equation is not too costly, an implicit method can have big advantages in speed by

allowing a larger step size ∆s.

Let us write the system of differential equations for the solution vector v, and
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the equivalent Picard integral equation, as follows:

∂v

∂s
= f(v, s) , v(s+∆s) = v(s) +

∫ s+∆s

s

f(v(t), t)dt . (19)

For small ∆s the integral may be approximated by the trapezoidal rule,∫ s+∆s

s

f(v(t), t)dt ≈ ∆s

2

(
f(v(s), s) + f(v(s+∆s, s+∆s)

)
, (20)

which suggests the Crank-Nicolson10 or trapezoidal integrator,

vn+1 − vn

∆s
=

1

2

(
f(vn, sn) + f(vn+1, sn+1)

)
. (21)

5. Allowing a second derivative in s through an implicit

integration rule

If we could restore the term uss = ∂2u/∂s2 that was dropped from (2) before

discretization we would be dealing with the full Maxwell system, rather than the

SVA (paraxial) approximation. A first try to do that is discouraging. If we merely

add the lowest finite-difference form of uss/2ik to the left side of (6) we get a system

that is grossly unstable by experiment, using values of ∆s that yielded stability

without that term.

It did not occur to me that one might nevertheless get stability by means of an

implicit rule, until I noticed a paper of Benedetti et al.11 in which a method they

called a Crank-Nicolson scheme included a term representing a second derivative.

Their differential equation was different from ours, but I was nevertheless motivated

to put the same term in our system. The favorable result is described in the sequel.

6. Marked acceleration of the algorithm by the trapezoidal

method, with second derivative in s included

We now state the trapezoidal scheme (21) using the same 3-point interpolation in x

that was used in (6). An important change, however, is that the forward difference

quotient is used for ∂v/∂s, as in (21), rather than the central difference of (6).

Experiment showed that the central difference is detrimental in the trapezoidal

method, which is perhaps not surprising in view of the derivation of (21). On

the other hand, the central difference works very much better than the forward

difference in the explicit method, in fact is essential for reasonable stability. By

Taylor expansions the central difference gives a higher order approximation than

the forward difference, but apparently that does not mean that it should always be

used!

We state the equations, including a term for vss, making use of convenient
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abbreviations:

∆(vn+1
j − 2vnj + vn−1

j ) + vn+1
j − vnj =

hj(v
n
j+1 − 2vnj + vnj−1 + vn+1

j+1 − 2vn+1
j + vn+1

j−1 ) + kj(v
n
j+1 − vnj−1 + vn+1

j+1 − vn+1
j−1 ) +

lj(v
n
j + vn+1

j )− σj∆sS̃j , j = 2, · · · , N − 1 , (22)

where

σj =
i

2k

(
xi +R

R

)2

, ∆ =
1

2ik∆s
,

hj =
σj∆s

2(∆x)2
, kj =

σj∆s

4∆x(xi +R)
, lj =

σj∆s

2

(
γ2
p −

(
kR

xj +R

)2)
. (23)

The linear equations for vn+1 have a tri-diagonal form, which we display as follows:

ajv
n+1
j−1 + bjv

n+1
j + cjv

n+1
j+1 = dnj , j = 2, · · · , N − 1 , (24)

with

aj = −hj + kj , bj = 1 + 2hj − lj +∆ , cj = −hj − kj , (25)

dnj = hj(v
n
j+1 − 2vnj + vnj−1) + kj(v

n
j+1 − vnj−1) + ljv

n
j

+(1 + 2∆)vnj −∆vn−1
j − σj∆sS̃j . (26)

One can think of different ways to enforce the boundary conditions. For a first

try I have chosen to substitute in (24) the boundary values for both vn and vn+1 as

defined in (14) and (15). Another idea is to enforce the boundary condition only

for vn+1, which can be done in the Thomas method for solving the tri-diagonal

system as described by Strikwerda12 and others. This requires a generalization

of Strikwerda’s procedure in the case of vH , employing the interpolants at the

boundaries.

After substitution of boundary values the equations can still be written in the

form (24), but with some redefinitions of the coefficients and right hand side. For

v = vE the replacements are

a2 → 0 , dN−1 → dN−1 + cN−1ξ
E(xN ) , cN−1 → 0 , (27)

while for v = vH the replacements are

b2 → b2 +
4

3
a2 , c2 → c2 −

1

3
a2 , a2 → 0

aN−1 → aN−1 −
1

3
cN−1 , bN−1 → bN−1 +

4

3
cN−1 ,

dN−1 → dN−1 +
2

3
cN−1∆x∂xξ

H(xN ) , cN−1 → 0 . (28)

In every case the values of v1 and vN that appear in d2 and dN−1, respectively, are

to be as stated in (14) and (15).

We now have a redefined tri-diagonal system of the form (24), with a2 = cN−1 =

0, which can be efficiently solved by the form of the Thomas algorithm given in Ref.
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13. Taking first ∆ = 0 so as to omit the second derivative vss, we run the case of

Figs. 9 and 10 and find curves that agree with those figures to graphical accuracy

(save for a tiny discrepancy near x = x+), and this is done with 100 steps in s

rather than 30000. The cost per step is larger, but we nevertheless get an increase

in speed by a factor of 70! In Ref. 9 we reported a time of 4.2 minutes on a single

processor to compute the full wake field at the end of the bend, including the sum

over values of k and p and some auxiliary calculations. With the new method this

would be reduced by at least the factor of 70, to around 3.5 seconds. I believe that

this is totally negligible compared to times with previous codes, and strengthens my

prediction that charge/current construction and particle pushing would dominate

if the method were applied to a macroparticle simulation. Compared to previous

codes we both shorten the time for field calculation and improve the model of the

vacuum chamber.

The next step is to restore the second derivative, again taking 100 steps. It

is highly gratifying to find that the method is still stable. Moreover, the second

derivative has hardly any effect on the solution, which is to be expected since we

already know that the SVA (paraxial) approximation is good in the case of a smooth

chamber. From the way that ∆ occurs in the equations, it appears that the second

derivative will have a minor effect if |∆| is sufficiently small compared to 1; i.e.,

that ∆s be sufficiently large. We are then called upon to see what happens with

decreasing ∆s. Indeed, we find that an instability sets in when ∆s is too small,

namely at about 150 steps at k = kmin ( but proportionally more at the more

relevant values of k well above the shielding threshold).

Without the second derivative it appears that the method is stable for “any”

∆s, as is the case for the trapezoidal rule applied to simpler examples like the heat

equation. There is a slow degradation in accuracy as ∆s is increased, but more

near the outer wall than in the region within the bunch, important for the beam

dynamics.

7. Outlook

The most urgent task on the conceptual side is to allow a corrugated outer wall in

the chamber, while including the second s-derivative. Superficially it would seem

that the method would be stable for small ∆, irrespective of boundary conditions,

but that might be too much to hope for. We have had some success in treating a

mildly perturbed wall without the second derivative, so it seems probable that we

could at least allow a stronger perturbation with the new method.

An immediate practical application, probably without the second derivative,

would be to use our method as the field solver in a self-consistent macro-particle

simulation of CSR in single-pass systems, such as a bunch compressor in an X-ray

FEL. A sketch of how such a calculation would proceed is presented in Ref. 9, Sec.

VII. The method of smoothing the effective source, presented here for the case of a

line charge, can be generalized to handle a source with finite but narrow width, as
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would be encountered in a realistic simulation; see Sec. III C in Ref. 9.

The present scheme, like earlier schemes with s as the independent variable, has

not accounted for the periodicity of fields in a full ring, which is essential for global

whispering gallery modes. It seems possible to adjust the initial condition to gain

periodicity, except at certain frequencies, which would be the resonant frequencies.

One can also think of an artificial periodicity over a distance less than a full turn,

and that seems a good approach to study the resonance-like peaks in the CLS

spectrum, which seem to be of local origin, not eigenmodes of the entire vacuum

chamber. The artificial period could be somewhat longer than the length of the

flared structure in the CLS.

A large part of the work of Ref. 9 was a study of energy deposited in resistive

walls of the chamber. Our method makes it easy to find any component of any

field at an arbitrary point in the chamber, once the basic solutions for Êyp and Ĥyp

are known. Magnetic fields at the walls were used in a perturbative procedure to

find the energy deposited. A non-perturbative treatment of the resistive wall will

require some new ideas, which ought to be pursued.
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